


#### Technical brochure

### Check valves,

#### Introduction



#### **Features**

- The valve ensures only correct flow direction
- Straightway versions
- Prevents back-condensation from warm to cold evaporator
- Built-in damping piston that makes the valves suitable for installation in lines where pulsation can occur, e.g. in the discharge line from the compressor.
- supplied with spring to Δp = 0.3 bar.
   Used in refrigeration plant with compressors connected in parallel.
- Oversize connections provide flexibility in use.

- Max. working pressure PS = 46 bar
- Max. test pressure
  P'= 60 bar

■ Temperature of the medium - 50 → 140°C

#### Dimensioning and selection

When dimensioning and selecting check valves to be mounted into the compressor discharge line, it is important to be aware of the following: The differential pressure across the check valve must always be higher than the given minimum pressure drop at which the valve is completely open. This also applies to lowest capacities for compressors with capacity regulation.

In refrigeration plant with compressors connected in parallel, it is advantageous to use valve, equipped with a stronger spring than With check valve, type problems can be avoided at partial load in the refrigeration plant. The differential pressure across valve, at partial load must not be lower than minimum pressure drop for valve, with completely open valve.



#### **Technical brochure**

#### Check valves,

#### Capacity

Hot gas capacity in kW

| Туре | at pr | Hot gas cap<br>essure drop ad | oacity kW ¹)<br>cross valve ∆ | p bar  |
|------|-------|-------------------------------|-------------------------------|--------|
|      | 0.05  | 0.07 2)                       | 0.14                          | 0.3 3) |

## R 600

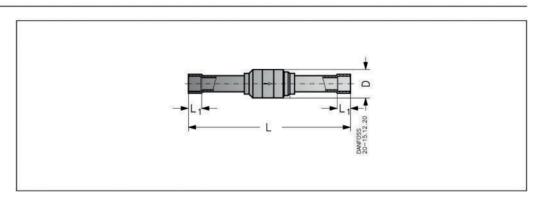
## R 600a

| check valve 6  |      | 0.99 | 1.40  | 2.05  |
|----------------|------|------|-------|-------|
| check valve 10 |      | 24.6 | 29.3  | 50.8  |
| check valve 12 | 3.05 | 3.61 | 5.10  | 7.48  |
| check valve16  | 5.36 | 6.34 | 9.00  | 13.2  |
| check valve 19 | 7.46 | 8.86 | 12.50 | 18.30 |

| 6  |      | 1.13  | 1.59  | 2.34  |
|----|------|-------|-------|-------|
| 10 |      | 2.88  | 4.08  | 5.97  |
| 12 | 3.50 | 4.13  | 5.85  | 8.5   |
| 16 | 6.14 | 7.26  | 10.30 | 15.10 |
| 19 | 8.53 | 10.10 | 14.30 | 20.90 |

## R 290

## R 1270


|       | 1.71  | 2.42                            | 3.55                                                                                           |
|-------|-------|---------------------------------|------------------------------------------------------------------------------------------------|
|       | 4.17  | 5.90                            | 8.63                                                                                           |
| 5.06  | 5.98  | 8.46                            | 12.40                                                                                          |
| 8.88  | 10.50 | 14.90                           | 21.80                                                                                          |
| 12.30 | 14.60 | 20.70                           | 30.20                                                                                          |
|       | 8.88  | 4.17<br>5.06 5.98<br>8.88 10.50 | 4.17        5.90          5.06        5.98        8.46          8.88        10.50        14.90 |

|    |       |       | - (A) | , ~   |
|----|-------|-------|-------|-------|
| 6  |       | 1.79  | 2.53  | 3.71  |
| 10 |       | 4.56  | 6.47  | 9.48  |
| 12 | 5.55  | 6.56  | 9.28  | 13.60 |
| 16 | 9.74  | 11.50 | 16.30 | 23.90 |
| 19 | 13.50 | 16.00 | 22.60 | 33.20 |

¹) The hot gas capacities are based on condensing temp.  $t_c=+25^{\circ}\text{C}, \text{subcooling}=4~\text{K}, \text{evaporating temp.}=-10^{\circ}\text{C} \\ \text{and hot gas temp.}\ t_h=+60^{\circ}~\text{C} \\ \text{ahead of valve}.$ 

An increase of the hot gas temperature of 10 K will reduce the valve capacity approx. 2% and vice versa.

#### **Dimensions and weights**



| Connection                 |                | Size |     | L   | L,  | ØD  | Weight |
|----------------------------|----------------|------|-----|-----|-----|-----|--------|
|                            | Туре           | in.  | mm. | mm. | mm. | mm. | kg.    |
| Solder<br>straight-<br>way | check valve 6  | 1/4  | 6   | 92  | 7   | 18  | 0.1    |
|                            | check valve 10 | 3/8  | 10  | 109 | 9   | 20  | 0.2    |
|                            | check valve 12 | 1/2  | 12  | 131 | 10  | 22  | 0.2    |
|                            | check valve 16 | 5/8  | 16  | 138 | 12  | 28  | 0.3    |
|                            | check valve 19 | 7/8  | 22  | 165 | 17  | 34  | 0.4    |

<sup>1)</sup> Oversize connections

<sup>2)</sup> Rated capacities

<sup>3)</sup> Capacity for



### **Technical brochure**

### Check valves,

#### **Ordering**

| Туре              | Tune                               | rsion               | Connection in |          | Connection<br>mm |                                      | Pressure<br>drop | k,-value ² |
|-------------------|------------------------------------|---------------------|---------------|----------|------------------|--------------------------------------|------------------|------------|
| Type ve           | Islon                              | Size                | Code no.      | Size     | Code no.         | across valve<br>∆p <sup>1)</sup> bar | m³/h             |            |
| check valves6s    |                                    | alves6s             |               | 020-6xxx | 6                | 020-6xxx                             | 0.07             | 0.56       |
| check valves10s   |                                    |                     | 3/8           | 020-6xxx | 10               | 020-6xxx                             | 0.07             | 1.42       |
| check valves-h10s |                                    | 3/8                 | 020-6xxx      | 10       | 020-6xxx         | 0.3                                  | 1.43             |            |
| check val         | valves12s                          |                     | 1/2           | 020-6xxx | 12               | 020-6xxx                             | 0.05             | 2.05       |
| check valv        | ves-h12s                           | Solder<br>ODF × ODF | 1/2           | 020-6xxx | 12               | 020-6xxx                             | 0.3              | 2.05       |
| check val         | valves16s                          | 5/8                 | 020-6xxx      | 16       | 020-6xxx         | 0.05                                 | 7979             |            |
| check valves-h16s |                                    | 5/8                 | 020-6xxx      | 16       | 020-6xxx         | 0.3                                  | 3.6              |            |
| check val         | heck valves19s<br>heck valves-h19s |                     | 3/4           | 020-6xxx | 19               | 020-6xxx                             | 0.05             | -          |
| check val         |                                    |                     | 3/4           | 020-6xxx | 19               | 020-6xxx                             | 0.3              | 5.5        |

<sup>&</sup>lt;sup>1</sup>)  $\Delta p =$  the minimum pressure at which the valve is completely open. with a stronger spring is used in the discharge line from compressors connected in parallel.

### Capacity

### Liquid capacity in kW

| <b>+</b> | Liquid | d capacity in k<br>across val | W at pressui<br>ve ∆p bar | e drop |
|----------|--------|-------------------------------|---------------------------|--------|
| Туре     | 0.05   | 0.07 ')                       | 0.14                      | 0.32)  |

### Suction vapour capacity in kW

| Туре | Pressure<br>drop across<br>valve ∆p bar | kW  | on vapour ca<br>dat evaporati<br>mperature t <sub>o</sub> | ing |
|------|-----------------------------------------|-----|-----------------------------------------------------------|-----|
|      |                                         | -30 | -101)                                                     | +5  |

## R 600

| check valve 6  |      | 9.6  | 13.6  | 19.9  |
|----------------|------|------|-------|-------|
| check valve 10 |      | 24.6 | 29.3  | 50.8  |
| check valve 12 | 29.7 | 35.2 | 49.7  | 72.8  |
| check valve 16 | 52.3 | 61.8 | 87.8  | 128.0 |
| check valve19  | 72.6 | 85.9 | 122.0 | 178.0 |

## R 600

| 6  | 0.07 | 0.34 | 0.57 | 0.80 |  |
|----|------|------|------|------|--|
| 10 | 0.07 | 0.87 | 1.46 | 2.04 |  |
| 12 | 0.05 | 1.06 | 1.77 | 2.49 |  |
| 16 | 0.05 | 1.86 | 3.11 | 4.38 |  |
| 19 | 0.05 | 2.59 | 4.34 | 6.09 |  |

# R 600a / R 290

| check valve 6  |      | 8.5  | 12.1  | 17.6  |
|----------------|------|------|-------|-------|
| check valve 10 |      | 21.7 | 30.8  | 45.0  |
| check valve 12 | 26.3 | 31.2 | 44.1  | 64.5  |
| check valve 16 | 46.3 | 54.8 | 77.3  | 113.4 |
| check valve 19 | 64.4 | 76.2 | 107.8 | 157.7 |

## R 600a

| 6  | 0.07 | 0.39 | 0.66 | 0.90 |
|----|------|------|------|------|
| 10 | 0.07 | 1.02 | 1.67 | 2.31 |
| 12 | 0.05 | 1.24 | 2.01 | 2.79 |
| 16 | 0.05 | 2.16 | 3.54 | 4.90 |
| 9  | 0.05 | 3.01 | 4.92 | 6.81 |

## R 1270

| check valve 6  |      | 8.8  | 12.5                                      | 18.3         |
|----------------|------|------|-------------------------------------------|--------------|
| check valve 10 |      | 22.5 | 31.8                                      | 46.6         |
| check valve 12 | 28.2 | 32.3 | 45.6                                      | 66.8         |
| check valve 16 | 47.9 | 56.7 | 80.3                                      | 118.0        |
| check valve 19 | 66.8 | 78.8 | 112.0                                     | 163.0        |
| 1000           |      |      | 241-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C | raice-school |

# R 290

|    | 6  | 0.07 | 0.71 | 1.09 | 1.45  |
|----|----|------|------|------|-------|
|    | 10 | 0.07 | 1.82 | 2.79 | 3.71  |
| 46 | 12 | 0.05 | 2.21 | 3.38 | 4.49  |
|    | 16 | 0.05 | 3.87 | 5.93 | 7.88  |
|    | 19 | 0.05 | 5.39 | 8.25 | 10.94 |

<sup>&</sup>lt;sup>2</sup>) The k<sub>v</sub> value is the flow of water in m<sup>3</sup>/h at a pressure drop across valve of 1 bar,  $\rho = 1000 \text{ kg/m}^3$ .

<sup>1)</sup> Rated capacities

<sup>2)</sup> Capacity for valve